A 319(h) Nonpoint Source Water Quality Project

Land Application of Feedyard Manure and Compost

Brent W. Auvermann, PhD Professor and Extension Specialist Texas A&M AgriLife Extension Service - Amarillo

Acknowledgment

Funding for this project has been provided by both public and private organizations, including the Texas State Soil and Water Conservation Board (work plan 09-04), Texas Cattle Feeders Association, Texas A&M AgriLife Extension Service, Texas A&M AgriLife Research, and West Texas A&M University

Objective

Sustain and support the long-term availability of off-site manure transfers as a manure- and nutrient-management tool for cattle feeders without increasing the risk of nonpoint-source (NPS) water pollution in cattle-feeding-intensive watersheds

Audiences

- Third-party contractors
 - Feedyard manureharvesting personnel
 - Manure haulers/ spreaders
 - Composters

- Farmers
 - Historical manure
 users
 - Those "on the bubble"
- Agencies

 USDA-NRCS
 EPA R6, TSSWCB, TCEQ
 SWCDs

CALIBRATING MANURE AND COMPOST SPREADERS

"What we said" = "What we did"

Why Calibrate?

How well does the spreader's output match the whole-field target?

The Methods

Whole-field vs. Single-pass

Whole-Field Calibration

- Really not a "spreader calibration" per se
- Stacking 5,000 tons in the corner of a 500acre pivot
- Target application = 10 tons/acre (as received)
- But does the truck put out 10 tons/acre?

Single-Pass Calibration

- Helps answer that question
- Helps:
 - Match spreader output to whole-field application target
 - Avoid shorting, overapplication
 - Optimize overlap of adjacent swaths
 - Optimize ground speed or engine RPM

Calibration Demos

Single-Pass Calibration Kit

- Collection tarps

 112" x 28" = 1/2,000 acre (centerline)
 56" x 56" = 1/2,000 acre (offset)
- Tarp weights
- Weighing tarp
- Fisherman's scale

1 lb on CL tarp = 1 ton/acre

Consistently Inconsistent

Measured vs. Target Application Rate Average 13.3 tons per acre +/- 7 tons per acre (n=18)

FEEDERS

Compost Application vs Tarp Position (Single Pass Method, Application Rate 3 Tons/acre)

There's More To It

$\bullet \bullet \bullet$

Accounting for overlap of adjacent passes

How do you calculate application rate when there is overlap by the spreader?

VERSITY

Mean Application Rate

- Spreader capacity (tons), C_T
- Time to empty (minutes), t_D
- Ground speed (mph), v
- Distance between adjacent pass centerlines (feet), X

Mean Application Rate

 $\overline{AR} = \frac{495 \cdot C_T}{X \cdot v \cdot t_D}$

13 ton spreader capacity; empties in ~5 minutes

Rule of Thumb

To optimize uniformity, the spacing between adjacent passes should be about ½ the width of the spreader pattern, if ground speed and discharge speed permit

Compost Application Measurement With Overlap (Application Rate 2 Tons/Acre)

RESEARCH

'est Texas A&N

IVERSITY

FF

EXTENSION