Quick and Dirty

Whole-Truck Method
Whole-Truck Method

- Weigh truck/trailer loaded and empty at feedyard scale ($W_L$ and $W_E$, lbs)
- Estimate total path length ($L$, ft)
- Estimate distance between swaths ($\beta$, ft)

$$AR = \frac{21.78 \cdot (W_L - W_E)}{X \cdot L}$$
Manure Calculator
Move Creative, L.L.C.

Description
The Manure Calculator allows farmers, ranchers, and producers to measure the amount of manure spread, calculate its nutrient content, and also estimate the amount of money saved by using manure over traditional chemical nutrients.

This calculator is designed to do three things:
1) calibrate manure spreading equipment (calculate the amount of manure applied)...

iPhone 5 Fixes

Information
Seller: Move Creative, L.L.C.
Category: Reference
Updated: Oct 23, 2012
Version: 1.0.1
Size: 10.3 MB
Rating: Rated 4+
Requires: Compatible with iPhone, iPod touch, and iPad. This app is optimized for iPhone 5. Requires iOS 5.0 or later.
Languages: English
WATER QUALITY DEMONSTRATION SITE

Deaf Smith County, TX
<table>
<thead>
<tr>
<th>Plot</th>
<th>Treatment</th>
<th>Soil Test P (lb/ac)</th>
<th>Soil NO₃ (lb/ac)</th>
<th>%P</th>
<th>%N</th>
<th>%Organic N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot 1</td>
<td>Manure (20 ton/ac)</td>
<td>160†</td>
<td>41†</td>
<td>0.81</td>
<td>1.88</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32‡</td>
<td>97‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot 2</td>
<td>Compost (5 ton/ac)</td>
<td>247</td>
<td>90</td>
<td>0.82</td>
<td>1.63</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot 3</td>
<td>Commercial Fertilizer</td>
<td>209</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot 4</td>
<td>Manure (10 ton/ac annually)</td>
<td>130</td>
<td>86</td>
<td>0.81</td>
<td>1.88</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†0-6”  
‡6-24”  
*E. coli* counts were zero for manure and compost samples
Nutrients Applied

<table>
<thead>
<tr>
<th>Plot</th>
<th>Application Rate (lb/ac)</th>
<th>Total P</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot 1</td>
<td>20 T/A Manure</td>
<td>752</td>
<td>325</td>
</tr>
<tr>
<td>Plot 2</td>
<td>5 T/A Compost</td>
<td>163</td>
<td>82</td>
</tr>
<tr>
<td>Plot 3</td>
<td>Commercial Fertilizer</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>Plot 4</td>
<td>10 T/A Manure</td>
<td>376</td>
<td>162</td>
</tr>
</tbody>
</table>
Runoff Flumes
Water Quality

Concentration in Runoff (ppm)

Plot 1
20 T/A Manure

Plot 2
5 T/A Compost

Plot 3
Commercial Fertilizer

Plot 4
10 T/A Manure

TP
TKN
Silage Harvesting
The graph shows the comparison of Silage Yield (T/ac) and Crude Protein (% DM) across different treatments:

- **20 T/ac manure**: High Silage Yield and Moderate Crude Protein.
- **5 T/ac compost**: High Silage Yield and Crude Protein.
- **125 lb N/ac fert**: Moderate Silage Yield and High Crude Protein.
- **10 T/ac manure**: High Silage Yield and High Crude Protein.

The data indicates that higher manure applications result in higher Silage Yield and Crude Protein levels.
Silage Yield Data (2011 and 2012)

Yield (tons/acre as harvested)

- Corn 2011
- Sorghum 2012

20 tons/acre manure 5 tons/acre compost Commercial fertilizer 10 tons/acre manure